Список литературы
литература/references
Lai. K.N., Tang S.C.W., Schena F.P., Novak J., Tomino Y., Fogo A.B., Glassock R.J.. IgA nephropathy. Nat Rev Dis Primers. 2016; 11(2): 16001. doi: 10.1038/nrdp.2016.1.DOI: 10.1038/nrdp.2016.1.
Woo K. T., Glassock R. J. and Lai. K.N. IgA Nephropathy: Discovery of a Distinct Glomerular Disorder. «RECENT ADVANCES IN IGA NEPHROPATHY» ed by Kar Neng Lai. Published by World Scientific Publishing Co. Pte. Ltd. 2009; Chapter 1, 1-7.
Han L., Fang X., He Y., Ruan X.Z. IgA Nephropathy, the Gut Microbiota, and Gut−Kidney Crosstalk. Kidney International Reports. 2016:189–196. DOI: 10.1016/j.ekir.2016.08.002.
Berthoux F.C., Mohey H., Afiani A. Natural history of primary IgA nephropathy. Semin Nephrol. 2008; 28: 4–9. DOI:10.1016/j.semnephrol.2007.10.001.
Uffing A., Perez-Saez M.J., Jouve T., Bugnazet M., Malvezzi P., Muhsin S.A., et al. Recurrence of IgA nephropathy after kidney transplantation in adults. Clin J Am Soc Nephrol. 2021; 16(8): 1247–55. DOI: 10.2215/CJN.00910121.
Ponticelli C, Glassock RJ. Posttransplant recurrence of primary glomerulonephritis. Clin J Am Soc Nephrol. 2010; 5(12): 2363–72. DOI: 10.2215/CJN.06720810
Novak J., Julian B.A., Tomana M., Mestecky J. IgA glycosylation and IgA immune complexes in the of IgA nephropathy. Semin Nephrol. 2008; 28: 78-87. DOI: 10.1016/j.semnephrol.2007.10.009.
Monteiro R.C., Van De Winkel J.G. IgA Fc receptors. Annu. Rev. Immunol. 2003;21: 177–204. DOI: 10.1146/annurev.immunol.21.120601.141011.
Suzuki H., Kiryluk K., Novak J., Moldoveanu Z., Herr A.B., Renfrow M.B., et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011; 22(10): 1795-1803. DOI:10.1681/ASN.2011050464.
Gesualdo L., Di Leo V., Coppo R. The mucosal immune system and IgA nephropathy. Semin Immunopathol. 2021;43(5):657-668. DOI: 10.1007/s00281-021-00871-y.
Rollino C., Vischini G., Coppo R. IgA nephropathy and infections. J Nephrol. 2016; 29(4): 463-468. DOI: 10.1007/s40620- 016-0265-x 128.
Zhu Y., He H., Sun W., Wu J., Xiao Y., Peng Y., et al. IgA nephropathy: gut microbiome regulates the production of hypoglycosilated IgA1 via the TLR4 signaling pathway. Nephrol.Dial.Transplant. 2024; 39(10): 1624-1641. DOI:10.1093/ndt/gfae052.
Fitzgerald K.A., Kagan J.C. Toll-like receptors and the control of immunity. Cell. 2020; 180: 1044–66. DOI:10.1016/j.cell.2020.02.041.
Cerutti A. The regulation of IgA class switching. Nat Rev Immunol. 2008;8(6):421-434. DOI: 10.1038/nri2322.
Chen K., Magri G., Grasset E.K., Cerutti A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat Rev Immunol. 2020; 20(7): 427-441. DOI: 10.1038/s41577-019-0261-1.
Du Y., Cheng T., Liu C., Zhu T., Guo C., Li S. et al. IgA Nephropathy: Current Understanding and Perspectives on Pathogenesis and Targeted Treatment. Diagnostics (Basel). 2023; 13(2): 303. DOI: 10.3390/ diagnostics13020303.
Kiryluk K., Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Invest. 2014; 124(6): 2325-2332. DOI: 10.1172/JCI74475.
Kaetzel C.S., Mestecky J., Johansen F.E. Two Cells, One Antibody: The Discovery of the Cellular Origins and Transport of Secretory IgA. J. Immunol. 2017; 198: 1765-1767. DOI: 10.4049/jimmunol.1700025.
Tuma P., Hubbard A.L. Transcytosis: crossing cellular barriers. Physiol Rev. 2003; 83: 871-932. DOI: 10.1152/physrev.00001.2003.
Gharavi A.G., Moldoveanu Z., Wyatt R.J. Barker C.V., Woodford S.Y., Lifton, R.P., et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol. 2008; 19(5): 1008-14. DOI: 10.1681/ASN.2007091052.
Wang Y.N., Zhou X.J., Chen P. Yu G.Z., Zhang X., Hou P., et al. Interaction between GALNT12 and C1GALT1 Associates with Galactose-Deficient IgA1 and IgA Nephropathy. J Am Soc Nephrol. 2021. 32(3): 545- 552. DOI:10.1681/ASN.2020060823.
Qin W., Zhong X., Fan J.M., Zhang Y. J., Liu X.R., Ma X.Y. External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol Dial Transplant. 2008; 23(5): 1608-1614. DOI:10.1093/ ndt/gfm781.
Suzuki H., Moldoveanu Z., Hall S., Brown R., Vu H.L., Novak L., et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 2008; 118(2): 629-639. doi: 10.1172/JCI33189э.
Novak J., Vu H.L., Novak L., Julian B.A., Mestecky J., Tomana M. Interactions of human mesangial cells with IgA and IgA-containing immune complexes. Kidney Int. 2002; 62(2):465-475. DOI: 10.1046/j.1523- 1755.2002.00477.x.
Phillips J.O., Komiyama K., Epps J.M., Russell M.W., Mesteckyet J. Role of hepatocytes in the uptake of IgA and IgA-containing immune complexes in mice. Mol Immunol. 1988. 25(9): 873-879. DOI: 10.1016/0161-5890(88)90124-1.
Tomana M., Novak J., Julian B.A. Matousovic K., Konecny K., Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999; 104(1): 73-81. DOI: 10.1172/JCI5535.
Novak J., Tomana M., Matousovic K., Brown R., Hall S., Novak L., et al. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int. 2005; 67, 504–513. DOI: 10.1111/j.1523-1755.2005.67107.x.
Suzuki H., Fan R., Zhang Z., Brown R., Hall S., Julian B.A., et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 2009; 119: 1668–1677. DOI: 10.1172/JCI38468.
Rizk D.V., Saha M.K., Hall S., Novak L., Brown R., Huanget Z.-Q., et al. Glomerular Immunodeposits of Patients with IgA Nephropathy Are Enriched for IgG Autoantibodies Specifi c for Galactose-Deficient IgA1. J Am Soc Nephrol. 2019; 30(10): 2017-2026. DOI: 10.1681/ASN.2018111156.
Moura I.C., Arcos-Fajardo M., Gdoura A., Leroy V., Sadaka C., Mahlaoui N., et al. Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J Am Soc Nephrol. 2005; 16(9):2667-2676. DOI:10.1681/ASN.2004111006.
Boyd J.K., Cheung C.K., Molyneux K., Feehally J., Barratt J.. An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int. 2012; 81(9): 833-843. DOI: 10.1038/ki.2011.501.
Bene M.C., Faure G.C. Composition of mesangial deposits in IgA nephropathy: complement factors. Nephron. 1987; 46(2): 219. DOI: 10.1159/000184350
Wyatt R.J., Kanayama Y., Julian B.A., Negoro N., Sugimoto S., Hudson E.C. et al. Complement activation in IgA nephropathy. Kidney Int. 1987; 31(4): 1019-1023. DOI:10.1038/ki.1987.10187.
Luvizotto M.J., Menezes-Silva L., Woronik V., Monteiro R.C., Câmara N.O.S. Gut-kidney axis in IgA nephropathy: Role on mesangial cell metabolism and inflammation. Frontiers in Cell and Developmental Biology. 2022;10:993716. DOI: 10.3389/fcell.2022.993716.
Goto T., Bandoh N., Yoshizaki T., Nozawa H., Takahara M., Ueda S., et al. Increase in B-cell activation factor (BAFF) and IFN-gamma productions by tonsillar mononuclear cells stimulated with deoxycytidyl-deoxyguanosine oligodeoxynucleotides (CpG-ODN) in patients with IgA nephropathy. Clin Immunol. 2008. 126(3): 260-269. DOI: 10.1016/j. clim.2007.11.003.
Takahara M., Kumai T., Komabayashi Y., Kumai T., Katada A., Hayashi T. et al. Aberrant expression of APRIL (a proliferation-inducing ligand) in tonsils from IgA nephropathy patients. J Immunol Allergo Otolaryngol. 2013. 31(2): 57-58, Toll-like receptor 9 affects severity of IgA nephropathy. J Am Soc Nephrol. 2008; 19(12): 2384-2395. DOI: 10.1681/ASN.2007121311.
McCarthy D.D., Kujawa J., Wilson C., Papandile A., Poreci U., Porfilio E.A. et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest. 2011;121(10):3991–4002. DOI: 10.1172/JCI45563
Zhai Y.L., Zhu L., Shi S.F., Liu L.J., Lv J.C., Zhang H.. Increased APRIL Expression Induces IgA1 Aberrant Glycosylation in IgA Nephropathy. Medicine (Baltimore). 2016; 95(11):e3099. DOI: 10.1097/ MD.0000000000003099.
He J.W., Zhou X.J., Hou P., Wang Y.N., Gan T., Li Y., et al. Potential Roles of Oral Microbiota in the Pathogenesis of Immunoglobin A Nephropathy. Front Cell Infect Microbiol. 2021;11:652837. DOI: 10.3389/ fcimb.2021.652837.
Currie E.G., Coburn B., Porfilio E.A., Lam P., Rojas O.L., Novak J., et al. Immunoglobulin A nephropathy is characterized by anticommensal humoral immune responses. JCI Insight. 2022; 7(5): e141289. DOI: 10.1172/jci.insight.141289.
Nyangale E.P., Mottram D.S., Gibson G.R. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res. 2012; 11: 5573. DOI: 10.1021/pr300637d.
Monteiro R.C., Rafeh D. and Gleeson P.J. Is There a Role for Gut Microbiome Dysbiosis in IgA Nephropathy? Microorganisms. 2022; Mar 22; 10(4): 683. DOI: 10.3390/microorganisms10040683
Linné T., Berg U., Bohman S.O., Sigström L. Course and long-term outcome of idiopathic IgA nephropathy in children. Pediatric Nephrology; 1991; 5: 383–386. doi.org/10.1007/BF01453658
Bene M.C., de Ligny B.H., Kessler M., Foliguet B., Faure G.C. Tonsils in IgA nephropathy. Contrib Nephrol. 1993: 104: 153-61. doi: 10.1159/000422408].
Meng H., Ohtake H., Ishida A., Ohta N., Kakehata S., Yamakawa M. IgA Production and Tonsillar Focal Infection in IgA Nephropathy. J Clin Exp Hematop. 2012; 52(3): 161-70. DOI: 10.3960/jslrt.52.161.
Tokuda, M. Shimizu, J. Sugiyama, N. Direct evidence of the production of IgA by tonsillar lymphocytes and the binding of IgA to the glomerular mesangium of IgA nephropathy patients. Acta Otolaryngol Suppl. 1996; 523: 182-184.
Yamabe H., Sugawara T., Nakamura M., Shimada M. Involvement of tonsils in IgA nephropathy. Acta Otolaryngol Suppl 2004; 555: 54–57. DOI: 10.1080/03655230410003404.
Li Y., Wan Q., Lan Z., Xia M., Liu H., Chen G., et al. Efficacy and indications of tonsillectomy in patients with IgA nephropathy: a retrospective study. Taylor & Francis PeerJ Life and Environment. 2022;10(1):e14481. DOI:10.7717/peerj.14481.
Maeda I., Hayashi T., Sato K.K., Shibata M.O., Hamada M., Kishida M., et al. Tonsillectomy has beneficial effects on remission and progression of IgA nephropathy independent of steroid therapy. 2012 Jul;27(7):2806-13. DOI:10.1093/ndt/gfs053.
Xie Y., Nishi S., Ueno M., Imai N., Sakatsume M., Narita I., et al. The efficacy of tonsillectomy on long-term renal survival in patients with IgA nephropathy. Kidney Int. 2003; 63(5):1861–1867 DOI: 10.1046/j.1523-1755.2003.00935.x.
Komatsu H., Fujimoto S., Hara S., Sato Y., Yamada K., Kitamura K.. Effect of tonsillectomy plus steroid pulse therapy on clinical remission of IgA nephropathy: a controlled study. Clin J Am Soc Nephrol 2008; 3: 1301–1307. DOI:10.2215/CJN.00310108.
Vergano L., Loiacono E., Albera R., Coppo R., Camilla R., Peruzzi L. et al. Can tonsillectomy modify the innate and adaptive immunity pathways involved in IgA nephropathy? J Nephrol. 2015;28(1):51–58]. DOI:10.1007/s40620-014-0086-8.
Rehnberg J., Symreng A., Ludvigsson J. F., Emilsson L. Inflammatory Bowel Disease Is More Common in Patients with IgA Nephropathy and Predicts Progression of ESKD: A Swedish Population-Based Cohort Study. JASN. 2021; 32(2): 411-423. DOI: 10.1681/ASN.2020060848.
Kiryluk K., Li Y., Scolari F., Sanna-Cherchi S., Choi M., Verbitsky M. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 2014; 46; 1187–1196. DOI:10.1038/ng.3118.
Xiao M., Ran Y., Shao J., Lei Z., Chen Y. and Li Y. Causal association between inflammatory bowel disease and IgA nephropathy: A bidirectional two-sample Mendelian randomization study. Front. Genet. 2022; 13: 1002928. DOI: 10.3389/fgene.2022.1002928..
Davin J.C., Forget P., Mahieu P.R. Increased intestinal permeability to (51 Cr) EDTA is correlated with IgA immune complex plasma levels in children with IgA-associated nephropathies. Acta Paediatr. Scand. 1988; 77: 118–1 24. DOI: 10.1111/j.1651-2227.1988.tb10609.x
Lauriero G., Abbad L., Vacca M., Celano G., Chemouny J.M., Calasso M., et al. Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Front Immunol. 2021; 12: 694787. DOI: 10.3389/fimmu.2021.694787.
Wang F., Li N., Ni S., Min Y., Wei K., Sun H., et al. The Effects of Specific Gut Microbiota and Metabolites on IgA Nephropathy–Based on Mendelian Randomization and Clinical Validation. Nutrients. 2023;15(10):2407. DOI: 10.3390/nu15102407.
Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013; 14(7): 676-84. DOI: 10.1038/ni.2640.
Khosravi A., Mazmanian S.K. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol. 2013; 16: 221–227. DOI: 10.1016/j.mib.2013.03.009
Zoetendal E.G., Rajilic-Stojanovic M. and de Vos W. M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 2008; 57: 1605-1615, doi:10.1136/gut.2007.133603.
Kuczynski J., Stombaugh J., Walters W.A., González A., Caporaso J.G.; Knight R. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics. 2011; Chapter 10:10.7.1-10.7.20. DOI: 10.1002/0471250953.bi1007s36.
Lepage P., Seksik Ph., Sutren M., de la Cochetière M-F, Jian R., Marteau Ph., Doré J. Biodiversity of the mucosa associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis. 2005; 11: 473–80. DOI: 10.1097/01.mib.0000159662.62651.06.
Doré J., Corthier G. Le microbiote intestinal humain. Gastroentérologie Clinique et Biologique. 2010; 34 (4), Supplement 1:7-16. DOI: 10.1016/S0399-8320(10)70002-6.
Park J.I., Kim T.Y., Oh B., Cho H. Comparative analysis of the tonsillar microbiota in IgA nephropathy and other glomerular diseases. Sci Rep. 2020; 10(1): 16206. DOI: 10.1038/s41598-020-73035-x.
Cao Y., Qiao M., Tian Z., , Yu Y., Xu B., Lao W., et al. Comparative Analyses of Subgingival Microbiome in Chronic Periodontitis Patients with and Without IgA Nephropathy by High Throughput 16S rRNA Sequencing. Cell Physiol Biochem. 2018; 47(2): 774-783. DOI: 10.1159/000490029.
He J.W., Zhou X.J., Lv J.C., Zhang H. Perspectives on how mucosal immune responses, infections and gut microbiome shape IgA nephropathy and future therapies. Theranostics. 2020;10(25):11462-11478. DOI: 10.7150/thno.49778.
Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., et al. Enterotypes of the human gut microbiome. Nature. 2011; 473: 174–180. DOI: 10.1038/nature09944.
Rinninella E., Raoul P., Cintoni M. Franceschi F., Miggiano G.A. D., Gasbarrini A., et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019; 7:14. DOI:10.3390/ microorganisms7010014.
Auchtung T., Fofanova Y., Stewart J., Nash A.K., Wong M.C., Gesell J.R. et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere. 2018; 3(2): e00092-18. DOI: 10.1128/mSphere.00092-18.
Stanford J., Charlton K., Stefoska-Needham A., Ibrahim R., Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol. 2020; 21: 215. DOI:10.1186/s12882-020-01805-w.
Jiang S., Xie S., Lv D., Zhang Y., Deng J., Zeng L., et al. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie Van Leeuwenhoek. 2016; 109:1389–96. DOI: 10.1007/s10482-016-0737-y.
Li Y., Su X., Zhang L., Liu Y., Shi M., Lv C., et al. Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case-controlled study. J Transl Med. 2019; 17: 228. DOI:10.1186/s12967-019-1969-1.
De Angelis M., Montemurno E., Piccolo M. et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS One. 2014. 9(6): e99006. DOI: 10.1371/ journal.pone.0099006.
Shin N.R., Whon T.W., Bae J.W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015; 33: 496–503. DOI: 10.1016/j.tibtech.2015.06.011.
Chemouny J.M., Gleeson P.J., Abbad L., Lauriero G., Boedec E., Le Roux K. et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice. Nephrol Dial Transplant. 2019; 34(7): 1135-1144. DOI: 10.1093/ndt/gfy323.
Di Leo V., Gleeson P.J., Sallustio F., Bounaix C., Da Silva J., Loreto G., et al. Rifaximin as a Potential Treatment for IgA Nephropathy in a Humanized Mice Model. J. Pers. Med. 2021; 11: 309. https://doi.org/10.3390/jpm11040309.
Pedersen G., Brynskov J., Saermark T. Phenol toxicity and conjugation in human colonic epithelial cells. Scand J Gastroenterol. 2002; 37: 74–79. DOI: 10.1080/003655202753387392.
Chen Y.-Y., Chen D.-Q., Chen L., Liu J.-R., Vaziri N.D., Guo Y., et al. Microbiome–metabolome reveals the contribution of gut–kidney axis on kidney disease. J. Transl. Med. 2019, 17:5. https://doi.org/10.1186/s12967-018-1756-4. DOI: 10.1159/000187211.
Sallustio F., Curci C., Chaoul N., Fonto G., Lauriero G., Picerno A., et al. High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrol Dial Transplant. 2021; 36(3): 452-464. DOI: 10.1093/ndt/gfaa264.
Zhong Z., Tan J., Tan L., Tang Y., Qiu Z.C., Pei G.Q., et al. Modifi cations of gut microbiota are associated with the severity of IgA nephropathy in the Chinese population. Int Immunopharmacol. 2020; 89: 107085. DOI: 10.1016/j.intimp.2020.107085.
Gleeson P., Benech N., Chemouny J., Metallinou E., Berthelot L., da Silva J., et al. The gut microbiota posttranslationally modifi es IgA1 in autoimmune glomerulonephritis. Sci. Transl. Med. American Association for the Advancement of Science. 2024; 16(740): eadl6149. DOI: 10.1126/scitranslmed.adl6149.
Van Nood E., Vrieze A., Nieuwdorp M., Fuentes S., Zoetendal E.G., de Vos W. M., et al. Duodenal infusion of donor feces for recurrent clostridium diffi cile. N Engl J Med. 2013. 368(407): 415. DOI: 10.1056/NEJMoa1205037
Gulati A., Nicholson M., Khoruts A., Lehtola L., Nurmi H., Ristikankare M. et al. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology. 2012; 142(3):490-6. DOI: 10.1053/j.gastro.2011.11.037.
Zhao J., Bai M., Yang X, Wang Y., Li R. and Sun S. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: the first case reports. RENAL FAILURE. 2021; 43 (1): 928–933. DOI: 10.1080/0886022X.2021.1936038.
Gulati A.S., Nicholson M. R., Khoruts A., Kahn S.A. Fecal microbiota transplantation across the lifespan balancing efficacy safety and innovation official journal of the American College of gastroenterology ACG. Am J Gastroenterol. 2023; 118(3):435-439. DOI:10.14309/ajg.0000000000002167].
Fusco W., Lorenzo M.B., Cintoni M., Porcari S., Rinninella E., Kaitsas F., et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients. 2023; 15(9): 2211. DOI:10.3390/nu15092211.
Shin Y., Han S., Kwon J., Ju S., Choi T.G., Kang, I., et al. Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients 2023;15: 4466. DOI:10.3390/nu15204466.
Corrêa-Oliveira R., Fachi J.L., Vieira A., Sato F.T., Vinolo M.A. Regulation of immune cell function by Short-Chain Fatty Acids. Clinical & Translational Immunology. 2016; 5(4): e73. DOI:10.1038/cti.2016.17.
Kasubuchi M., Hasegawa S., Hiramatsu T., Ichimura A., Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015; 7: 2839–2849. DOI:10.3390/nu7042839.
Thangaraju M., Cresci G.A., Liu K., Ananth S., Gnanaprakasam J.P., Browning D.D., Mellinger J.D.; et al. GPR109A Is a G-protein–Coupled Receptor for the Bacterial Fermentation Product Butyrate and Functions as a Tumor Suppressor in Colon. Cancer Res. 2009; 69 (7): 2826–2832. DOI:10.1158/0008-5472.CAN-08-4466.
Zhu Q., Zai H., Zhang K., Zhang X., Luo N., Li X., et al. L-norvaline affects the proliferation of breast cancer cells based on the microbiome and metabolome analysis. J Appl Microbiol. 2022; 133(2):1014–26. DOI: 10.1111/jam.15620.
Huang W., Guo H.L., Deng X., Zhu T.T., Xiong J.F., Xu Y.H., et al. Short-Chain Fatty Acids Inhibit Oxidative Stress and Inflammation in Mesangial Cells Induced by High Glucose and Lipopolysaccharide. Exp Clin Endocrinol Diabetes. 2017; 125(2): 98–105. DOI: 10.1055/s-0042-121493.
Musso G., Gambino R., Cassader M. Gut Microbiota as a Regulator of Energy Homeostasis and Ectopic Fat Deposition: Mechanisms and Implications for Metabolic Disorders. Curr. Opin. Lipidol. 2010; 21: 76–83. DOI: 10.1097/MOL.0b013e3283347ebb.
Donohoe D.R., Garge N., Zhang X., Sun W., O’Connell T.M., Bunger M.K., et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011; 13: 517–526. DOI: 10.1016/j.cmet.2011.02.018.
Schlatterer K., Peschel A., Kretschmer D.. Short-Chain Fatty Acid and FFAR2 Activation — A New Option for Treating Infections? Front Cell Infect Microbiol. 2021; 2: 11: 785833. DOI:10.3389/fcimb.2021.785833.
Alva-Murillo N., Ochoa-Zarzosa A., López-Meza J.E. Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol. 2012; 155(2–4): 324–31. DOI: 10.1016/j.vetmic.2011.08.025.
Van Deun K., Pasmans F., Ducatelle R., Flahou B., Vissenberg K., Martel A., et al. Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. Vet. Microbiol. 2008; 130: 285–297. DOI: 10.1016/j.vetmic.2007.11.027.
Fernández-Rubio C., Ordóñez C., Abad-González J., Garcia-Gallego A., Honrubia M.P., Mallo J.J., et al. Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poult Sci. 2009; 88(5): 943-8, DOI:10.3382/ps.2008-00484.
Roy C.C., Kien C L., Bouthillier L., Levy E. Short-chain fatty acids: ready for prime time? Nutr Clin Pract. 2006; 21(4): 351-66. DOI:10.1177/0115426506021004351.
Chai L., Luo Q., Cai K., Wang K. and Xu B. Reduced fecal short-chain fatty acids levels and the relationship with gut microbiota in IgA nephropathy. BMC Nephrology. 2021; 22:209. DOI:10.1186/s12882-021-02414-x.
Hu X., Du J., Xie Y, Huang Q, Xiao Y, Chen J, et al. Fecal microbiota characteristics of Chinese patients with primary IgA nephropathy: a crosssectional study. BMC Nephrol. 2020;21(1):97. DOI:10.1186/s12882-020-01741-9.
Guilin Z., Pengyu Z., Wei L., Fengqi H., Chen F., Yu Y., et al. Reduction of gut microbial diversity and short chain fatty acids in BALB/c mice exposure to microcystin-LR. Ecotoxicology. 2020; 29(9): 1347–1357. DOI:10.1007/s10646-020-02254-9.
Huang W., Zhou L., Guo H., Xu Y. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism. 2017; 68:20–30. DOI:10.1016/j.metabol.2016.11.006.
Lin M.Y., de Zoete M.R., van Putten J.P., Strijbis K. Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases. Front Immunol. 2015;6:554, DOI:10.3389/fimmu.2015.00554.
Chambers E.S.; Morrison D.J.; Frost G. Control of appetite and energy intake by SCFA: What are the potential underlying mechanisms? Proc. Nutr. Soc. 2015; 74: 328–336. DOI:10.1017/S0029665114001657.
Gu J., Huang W., Zhang W., Zhao T., Gao C., Gan W., et al. Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis. Int Immunopharmacol. 2019; 75: 105832. DOI: 10.1016/j.intimp.2019.105832.
Luo S., Yang M., Han Y., Zhao H., Jiang, N., Li, L., et al. β-Hydroxybutyrate against Cisplatin-Induced acute kidney injury via inhibiting NLRP3 inflammasome and oxidative stress. Int. Immunopharmacol. 2022; 111: 109101. DOI:10.1016/j.intimp.2022.109101.
Tajima T., Yoshifuji A., Matsui A.; Itoh T., Uchiyama K., Kanda, T., et al. β-hydroxybutyrate attenuates renal ischemia-reperfusion injury through its anti-pyroptotic effects. Kidney Int. 2019; 95: 1120–1137. DOI:10.1016/j.kint.2018.11.034.
Chen G., Ran X., Li B., Li Y., He D., Huang B., et al. Sodium Butyrate Inhibits Inflammation and Maintains Epithelium Barrier Integrity in a TNBS-induced Inflammatory Bowel Disease Mice Model. Ebio Medicine. 2018; 30: 317–25. DOI: 10.1016/j.ebiom.2018.03.030.
Gong Y., Jin X., Yuan B., Lv Y., Yan G., Liu M., et al. G Protein-Coupled Receptor 109A Maintains the Intestinal Integrity and Protects Against ETEC Mucosal Infection by Promoting IgA Secretion. Front. Immunol. 2021; 11:583652. DOI: 10.3389/fimmu.2020.583652.
Wang S., Lv D., Jiang S., Jiang J., Liang M., Hou F., et al. Quantitative reduction in short-chain fatty acids, especially butyrate, contributes to the progression of chronic kidney disease. Clin Sci(Lond). 2019; 133: 1857–1870. 20. DOI:10.1042/CS20190171.