Аннотация
Антибиотики стали неотъемлемой частью современной медицины с момента открытия пенициллина А. Флемингом в 1928 г. Британский ученый, изучая колонии бактерий, заметил, что вокруг плесневого гриба Penicillium notatum образуется зона, свободная от бактерий. Флеминг понял, что плесень выделяет вещество, убивающее бактерии. Это вещество было названо пенициллином. Открытие Флеминга стало отправной точкой для развития целого класса антибиотиков, которые революционизировали лечение инфекционных заболеваний. Однако с широким распространением антибиотиков стали появляться и негативные последствия их использования.
Annotation
Antibiotics have been an integral part of modern medicine since the discovery of penicillin by A. Fleming in 1928. The British scientist, studying bacterial colonies, noticed that a bacteria-free zone was formed around the mold fungus Penicillium notatum. Fleming realized that the mold secreted a substance that killed bacteria. This substance was called penicillin. Fleming’s discovery became the starting point for the development of a whole class of antibiotics that revolutionized the treatment of infectious diseases. However, with the widespread use of antibiotics, negative consequences of their use also began to appear.
Список литературы
Л И Т Е РАТ У РА
1. Patangia D.V., Anthony Ryan C., Dempsey E., Paul Ross R., Stanton C.
Impact of antibiotics on the human microbiome and consequences for
host health. MicrobiologyOpen. 2022; 11(1): e1260.
2. Muteeb G., Rehman T., Shahwan M., Aatif M. Origin of antibiotics and
antibiotic resistance, and their impacts on drug development: A narrative
review. Pharmaceuticals (Basel). 2023; 16(11): 1615.
3. Shrivastava S., Shrivastava P.S., Ramasamy J. World Health Organization
releases global priority list of antibiotic-resistant bacteria to guide
research, discovery, and development of new antibiotics. Journal of
Medical Society. 2017; 32(1): 76–77.
4. Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M.,
Monnet D.L. et al. Discovery, research, and development of new antibiotics:
the WHO priority list of antibiotic-resistant bacteria and tuberculosis.
The Lancet Infectious Diseases. 2018; 18(3): 318e27.
5. Feldgarden M., Brover V., Haft D.H., Prasad A.B., Slotta D.J., Tolstoy
I., et al. Validating the AMRfinder tool and resistance gene database
by using antimicrobial resistance genotype-phenotype correlations in a
collection of isolates. Antimicrobial Agents and Chemotherapy. 2019;
63(1): e00483-19.
6. Eichel V.M., Last K., Brühwasser C., von Baum H., Dettenkofer M.,
Götting T., et al. Epidemiology and outcomes of vancomycin-resistant
enterococcus infections: A systematic review and meta-analysis. Journal
of Hospital Infection. 2023; 141: 119–128.
7. Werth B.J., Barber K.E., Tran N., Nonejuie P., Sakoulas G., Pogliano
J., Rybak M.J. Ceftobiprole and ampicillin increase daptomycin susceptibility
of daptomycin-susceptible and -resistant VRE. Journal of
Antimicrobial Chemotherapy. 2015; 70(2): 489–493.
8. Kunhikannan S., Thomas C.J., Franks A.E., Mahadevaiah S., Kumar
S., Petrovski S. Environmental hotspots for antibiotic resistance genes.
Microbiology Open. 2021; 10(3): e1197.
9. Li Y., Xu Z., Han W., Cao H., Umarov R., Yan A., et al. HMD-ARG: hierarchical
multi-task deep learning for annotating antibiotic resistance
genes. Microbiome. 2021. 9(1): 40.
10. Кряжевских А.А. Бардина В.И., Склярова Н.А. Методы биотести-
рования для обнаружения лекарственных средств в водной среде.
Формулы фармации. 2022; 4(1): 61-69.
11. Склярова Н.А., Склярова Л.В., Коваленко М.Ю. Современные
подходы к биоиндикации лекарственных средств и их метаболи-
тов в воде питьевой. Перспективы внедрения инновационных тех-
нологий в медицине и фармации: Сб. материалов X Всерос. науч.-
практ. конф. с международным участием. Электрогорск: ЭКОлаб,
2023.
12. Kizny Gordon A.E., Mathers A.J., Cheong E.Y.L., Gottlieb T., Kotay
S., Walker A.S., Peto T.E.A.et al. The hospital water environment as a
reservoir for carbapenem — resistant organisms causing hospital — acquired
infections: A systematic review of the literature. Clin. Infect.
Dis. 2017; 64(10): 1435–1444. doi: 10.1093/cid/cix132
13. Gibson M.K., Forsberg K.J., Dantas G. Improved annotation of antibiotic
resistance determinants reveals microbial resistomes cluster by
ecology. ISME Journal. 2015; 9(1): 207–216.
14. Bertagnolio S., Suthar A.B., Tosas O., Van Weezenbeek K. Antimicrobial
resistance: Strengthening surveillance for public health action.
PLoS Med. 2023; 20(7): e1004265.
15. CDC. Centre for Disease Control and Prevention, 2019 Antibiotic Resistance
Threats Report. URL: https://www.cdc.gov/antimicrobial-resistance/
data-research/threats/index.html (дата доступа: 12.11.2024).
16. Захарова О.И., Лискова Е.А., Михалева Т.В., Блохин А.А. Анти-
биотикорезистентность: эволюционные предпосылки, механиз-
мы, последствия. Аграрная наука Евро-Северо-Востока. 2018;
64(3): 13–21.
17. Chaïbi K., Chaussard M., Soussi S., Lafaurie M., Legrand M. Not
all β-lactams are equal regarding neurotoxicity. Critical Care. 2016;
20(1): 350.
R E F E R E NC E S
1. Patangia D.V., Anthony Ryan C., Dempsey E., Paul Ross R., Stanton C.
Impact of antibiotics on the human microbiome and consequences for
host health. MicrobiologyOpen. 2022; 11(1): e1260.
2. Muteeb G., Rehman T., Shahwan M., Aatif M. Origin of antibiotics and
antibiotic resistance, and their impacts on drug development: A narrative
review. Pharmaceuticals (Basel). 2023; 16(11): 1615.
3. Shrivastava S., Shrivastava P.S., Ramasamy J. World Health Organization
releases global priority list of antibiotic-resistant bacteria to guide
research, discovery, and development of new antibiotics. Journal of
Medical Society. 2017; 32(1): 76–77.
4. Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M.,
Monnet D.L. et al. Discovery, research, and development of new antibiotics:
the WHO priority list of antibiotic-resistant bacteria and tuberculosis.
The Lancet Infectious Diseases. 2018; 18(3): 318e27.
5. Feldgarden M., Brover V., Haft D.H., Prasad A.B., Slotta D.J., Tolstoy
I., et al. Validating the AMRfinder tool and resistance gene database
by using antimicrobial resistance genotype-phenotype correlations in a
collection of isolates. Antimicrobial Agents and Chemotherapy. 2019;
63(1): e00483-19.
6. Eichel V.M., Last K., Brühwasser C., von Baum H., Dettenkofer M.,
Götting T., et al. Epidemiology and outcomes of vancomycin-resistant
enterococcus infections: A systematic review and meta-analysis. Journal
of Hospital Infection. 2023; 141: 119–128.
7. Werth B.J., Barber K.E., Tran N., Nonejuie P., Sakoulas G., Pogliano
J., Rybak M.J. Ceftobiprole and ampicillin increase daptomycin susceptibility
of daptomycin-susceptible and -resistant VRE. Journal of
Antimicrobial Chemotherapy. 2015; 70(2): 489–493.
8. Kunhikannan S., Thomas C.J., Franks A.E., Mahadevaiah S., Kumar
S., Petrovski S. Environmental hotspots for antibiotic resistance genes.
Microbiology Open. 2021; 10(3): e1197.
9. Li Y., Xu Z., Han W., Cao H., Umarov R., Yan A., et al. HMD-ARG: hierarchical
multi-task deep learning for annotating antibiotic resistance
genes. Microbiome. 2021. 9(1): 40.
10. Kryazhevskikh A.A., Bardina V.I., Sklyarova N.A. Biotesting methods
for detecting drugs in the aquatic environment. Formuly farmatsii.
2022; 4(1): 61-69. (in Russian)
11. Sklyarova N.A., Sklyarova L.V., Kovalenko M.Yu. Modern approaches
to bioindication of drugs and their metabolites in drinking water. Perspektivy
vnedreniya innovatsionnykh tekhnologiy v meditsine i farmatsii:
Sb. materialov X Vseros. nauch.-prakt. konf. s mezhdunarodnym
uchastiem. Elektrogorsk: EKOlab, 2023. (in Russian)
12. Kizny Gordon A.E., Mathers A.J., Cheong E.Y.L., Gottlieb T., Kotay
S., Walker A.S., Peto T.E.A.et al. The hospital water environment as a
reservoir for carbapenem — resistant organisms causing hospital — acquired
infections: A systematic review of the literature. Clin. Infect.
Dis. 2017; 64(10): 1435–1444. doi: 10.1093/cid/cix132
13. Gibson M.K., Forsberg K.J., Dantas G. Improved annotation of antibiotic
resistance determinants reveals microbial resistomes cluster by
ecology. ISME Journal. 2015; 9(1): 207–216.
14. Bertagnolio S., Suthar A.B., Tosas O., Van Weezenbeek K. Antimicrobial
resistance: Strengthening surveillance for public health action.
PLoS Med. 2023; 20(7): e1004265.
15. CDC. Centre for Disease Control and Prevention, 2019 Antibiotic Resistance
Threats Report. URL: https://www.cdc.gov/antimicrobial-resistance/
data-research/threats/index.html (дата доступа: 12.11.2024).
16. Zakharova O.I., Liskova E.A., Mikhaleva T.V., Blokhin A.A. Antibiotic
resistance: evolutionary prerequisites, mechanisms, consequences.
Agrarnaya nauka Evro-Severo-Vostoka. 2018; 64(3): 13–21. (in
Russian)
17. Chaïbi K., Chaussard M., Soussi S., Lafaurie M., Legrand M. Not
all β-lactams are equal regarding neurotoxicity. Critical Care. 2016;
20(1): 350.